The Carathéodory and Kobayashi Metrics and Applications in Complex Analysis

نویسنده

  • Steven G. Krantz
چکیده

The Carathéodory and Kobayashi metrics have proved to be important tools in the function theory of several complex variables. But they are less familiar in the context of one complex variable. Our purpose here is to gather in one place the basic ideas about these important invariant metrics for domains in the plane and to provide some illuminating examples and applications. 0 Prefatory Thoughts In the late nineteenth century, Henri Poincaré (1854–1912) introduced the profoundly original idea of equipping the unit disc D in the complex plane with a metric that is invariant under conformal self-maps of D. One may recall (see [GRK]) that the conformal maps of the disc are generated by the rotations ρθ : ζ 7−→ e ζ for 0 ≤ θ < 2π and the Möbius transformations φa : ζ 7−→ ζ − a 1− aζ for a ∈ C, |a| < 1. While rotations certainly preserve Euclidean distance, the Möbius transformations do not—see Figure 1. It is most convenient to describe the Poincaré metric in infinitesimal form. In fact we set ρ(ζ) = 1 1− |ζ |2 .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Holomorphicity of Isometries of Intrinsic Metrics in Complex Analysis

Let Ω1 and Ω2 be strongly pseudoconvex domains in C and f : Ω1 → Ω2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C map to Ω̄1. We then prove that f |∂Ω1 : ∂Ω1 → ∂Ω2 is a CR or anti-CR diffeomorphism. It follows that Ω1 and Ω2 must be biholomorphic or anti-biholomorphic. The main tool is a metric version of the Pinchuk rescaling technique.

متن کامل

COMPLETE EINSTEIN-KÄHLER METRIC AND HOLOMORPHIC SECTIONAL CURVATURE ON YII(r, p;K)

The explicit complete Einstein-Kähler metric on the second type Cartan-Hartogs domain YII(r, p;K) is obtained in this paper when the parameter K equals p 2 + 1 p+1 . The estimate of holomorphic sectional curvature under this metric is also given which intervenes between −2K and − 2K p and it is a sharp estimate. In the meantime we also prove that the complete Einstein-Kähler metric is equivalen...

متن کامل

On Isometries of Intrinsic Metrics in Complex Analysis

We study isometries of the Kobayashi and Carathéodory metrics on strongly pseudoconvex and strongly convex domains in C and prove: (i) Let Ω1 and Ω2 be strongly pseudoconvex domains in C and f : Ω1 → Ω2 an isometry. Suppose that f extends as a C map to Ω̄1. Then f |∂Ω1 : ∂Ω1 → ∂Ω2 is a CR or anti-CR diffeomorphism. Hence it follows that Ω1 and Ω2 must be biholomorphic or anti-biholomorphic. (ii)...

متن کامل

On isometries of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains

Let 1 and 2 be strongly pseudoconvex domains in Cn and f : 1 → 2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C1 map to ̄1. We then prove that f |∂ 1 : ∂ 1 → ∂ 2 is a CR or anti-CR diffeomorphism. It follows that 1 and 2 must be biholomorphic or anti-biholomorphic. Mathematics Subject Classification (2000): 32F45 (primary); 32Q45 (secondary).

متن کامل

1 O ct 1 99 3 Complex Finsler metrics by Marco Abate and

A complex Finsler metric is an upper semicontinuous function F : T 1,0 M → R + defined on the holomorphic tangent bundle of a complex Finsler manifold M , with the property that F (p; ζv) = |ζ|F (p; v) for any (p; v) ∈ T 1,0 M and ζ ∈ C. Complex Finsler metrics do occur naturally in function theory of several variables. The Kobayashi metric introduced in 1967 ([K1]) and its companion the Carath...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2008